When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    Usually the number of columns of W and the number of rows of H in NMF are selected so the product WH will become an approximation to V. The full decomposition of V then amounts to the two non-negative matrices W and H as well as a residual U, such that: V = WH + U. The elements of the residual matrix can either be negative or positive.

  3. Shortest common supersequence - Wikipedia

    en.wikipedia.org/wiki/Shortest_common_supersequence

    The closely related problem of finding a minimum-length string which is a superstring of a finite set of strings S = { s 1,s 2,...,s n} is also NP-hard. [2] Several constant factor approximations have been proposed throughout the years, and the current best known algorithm has an approximation factor of 2.475. [ 3 ]

  4. Two-way string-matching algorithm - Wikipedia

    en.wikipedia.org/wiki/Two-way_string-matching...

    In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...

  5. String-searching algorithm - Wikipedia

    en.wikipedia.org/wiki/String-searching_algorithm

    A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.

  6. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    It's also important to apply feature scaling if regularization is used as part of the loss function (so that coefficients are penalized appropriately). Empirically, feature scaling can improve the convergence speed of stochastic gradient descent. In support vector machines, [2] it can reduce the time to find support vectors. Feature scaling is ...

  7. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.

  8. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Moreover, for n < p (the number of observations is less than the number of random variables) the empirical estimate of the covariance matrix becomes singular, i.e. it cannot be inverted to compute the precision matrix. As an alternative, many methods have been suggested to improve the estimation of the covariance matrix.

  9. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.