Search results
Results From The WOW.Com Content Network
The Richter scale [1] (/ ˈ r ɪ k t ər /), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, [2] is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". [3]
The first scale for measuring earthquake magnitudes, developed in 1935 by Charles F. Richter and popularly known as the "Richter" scale, is actually the local magnitude scale, label ML or M L. [11] Richter established two features now common to all magnitude scales.
Seismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake.They are distinguished from seismic magnitude scales, which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking.
Gutenberg–Richter law fitted to the aftershocks of the August 2016 Central Italy earthquake, during the Aug 22 – Sep 1 period.Notice that the linear fit fails at the upper and lower end, due to lack of registered events.
This scale is also known as the Richter scale, but news media sometimes use that term indiscriminately to refer to other similar scales.) The local magnitude scale was developed on the basis of shallow (~15 km (9 mi) deep), moderate-sized earthquakes at a distance of approximately 100 to 600 km (62 to 373 mi), conditions where the surface waves ...
In two most recent investigations using statistically stable samples for Italian earthquakes (approximately 100,000 events over the period 1981–2002 in the Richter local [M L ] magnitude range of 3.5–5.8) [5] and for Indian earthquakes exemplified by an aftershock sequence of 121 events with M s (surface wave magnitude) > 4.0 in 2001 in the Bhuj area of northwestern India, [4] the latest ...
The formula to calculate surface wave magnitude is: [3] = + (), where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s (usually 20 ± 2 seconds), Δ is the epicentral distance in °, and
Unlike a linear scale where each unit of distance corresponds to the same increment, on a logarithmic scale each unit of length is a multiple of some base value raised to a power, and corresponds to the multiplication of the previous value in the scale by the base value. In common use, logarithmic scales are in base 10 (unless otherwise specified).