When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degeneracy (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(graph_theory)

    In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has at least one vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate.

  3. Outerplanar graph - Wikipedia

    en.wikipedia.org/wiki/Outerplanar_graph

    There is a notion of degree of outerplanarity. A 1-outerplanar embedding of a graph is the same as an outerplanar embedding. For k > 1 a planar embedding is said to be k-outerplanar if removing the vertices on the outer face results in a (k − 1)-outerplanar embedding. A graph is k-outerplanar if it has a k-outerplanar embedding. [16]

  4. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    k-degenerate graphs have also been called k-inductive graphs. degree 1. The degree of a vertex in a graph is its number of incident edges. [2] The degree of a graph G (or its maximum degree) is the maximum of the degrees of its vertices, often denoted Δ(G); the minimum degree of G is the minimum of its vertex degrees, often denoted δ(G).

  5. Degenerate distribution - Wikipedia

    en.wikipedia.org/wiki/Degenerate_distribution

    The degenerate univariate distribution can be viewed as the limiting case of a continuous distribution whose variance goes to 0 causing the probability density function to be a delta function at k 0, with infinite height there but area equal to 1. [citation needed] The cumulative distribution function of the univariate degenerate distribution is:

  6. Incidence coloring - Wikipedia

    en.wikipedia.org/wiki/Incidence_coloring

    A graph is said to be k-generated if for every subgraph H of G, the minimum degree of H is at most k. Incidence chromatic number of k-degenerated graphs G is at most ∆(G) + 2k − 1. Incidence chromatic number of K 4 minor free graphs G is at most ∆(G) + 2 and it forms a tight bound. Incidence chromatic number of a planar graph G is at most ...

  7. Moore graph - Wikipedia

    en.wikipedia.org/wiki/Moore_graph

    Some examples are the even cycles C 2n, the complete bipartite graphs K n,n with girth four, the Heawood graph with degree 3 and girth 6, and the Tutte–Coxeter graph with degree 3 and girth 8. More generally it is known that, other than the graphs listed above, all Moore graphs must have girth 5, 6, 8, or 12. [6]

  8. Ramsey's theorem - Wikipedia

    en.wikipedia.org/wiki/Ramsey's_theorem

    Each complete graph K n has ⁠ 1 / 2 ⁠ n(n − 1) edges, so there would be a total of c n(n-1)/2 graphs to search through (for c colours) if brute force is used. [6] Therefore, the complexity for searching all possible graphs (via brute force ) is O ( c n 2 ) for c colourings and at most n nodes.

  9. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    A degenerate conic is a conic section (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve. A point is a degenerate circle, namely one with radius 0. [1] The line is a degenerate case of a parabola if the parabola resides on a tangent plane.