Search results
Results From The WOW.Com Content Network
In mathematics education, ethnomathematics is the study of the relationship between mathematics and culture. [1] Often associated with "cultures without written expression", [2] it may also be defined as "the mathematics which is practised among identifiable cultural groups". [3]
Critical mathematics pedagogy is an approach to mathematics education that includes a practical and philosophical commitment to liberation. [1] Approaches that involve critical mathematics pedagogy give special attention to the social, political, cultural and economic contexts of oppression, as they can be understood through mathematics. [2]
Criticism of traditional mathematics instruction originates with advocates of alternative methods of instruction, such as Reform mathematics.These critics cite studies, such as The Harmful Effects of Algorithms in Grades 1–4, which found specific instances where traditional math instruction was less effective than alternative methods.
The Renaissance saw a rebirth of Classical Greek and Roman culture and ideas, among them the study of mathematics to understand nature and the arts. Two major motives drove artists in the late Middle Ages and the Renaissance towards mathematics. First, painters needed to figure out how to depict three-dimensional scenes on a two-dimensional canvas.
Many applied mathematics programs (as opposed to departments) consist primarily of cross-listed courses and jointly appointed faculty in departments representing applications. Some Ph.D. programs in applied mathematics require little or no coursework outside mathematics, while others require substantial coursework in a specific area of application.
Sacred Mathematics: Japanese Temple Geometry is a book on Sangaku, geometry problems presented on wooden tablets as temple offerings in the Edo period of Japan. It was written by Fukagawa Hidetoshi and Tony Rothman , and published in 2008 by the Princeton University Press .
Mathematics makes up that part of the human conceptual system that is special in the following way: It is precise, consistent, stable across time and human communities, symbolizable, calculable, generalizable, universally available, consistent within each of its subject matters, and effective as a general tool for description, explanation, and prediction in a vast number of everyday activities ...
Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathematical objects are purely abstract entities or are in some way concrete, and in what the relationship ...