When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    The distribution was independently rediscovered by the English mathematician Karl Pearson in the context of goodness of fit, for which he developed his Pearson's chi-squared test, published in 1900, with computed table of values published in (Elderton 1902), collected in (Pearson 1914, pp. xxxi–xxxiii, 26–28, Table XII).

  3. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    The chi-squared test, when used with the standard approximation that a chi-squared distribution is applicable, has the following assumptions: [7] Simple random sample The sample data is a random sampling from a fixed distribution or population where every collection of members of the population of the given sample size has an equal probability ...

  4. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables. It is a special case of the Gamma distribution, and it is used in goodness-of-fit tests in statistics. The inverse-chi-squared distribution; The noncentral chi-squared distribution

  6. Chi distribution - Wikipedia

    en.wikipedia.org/wiki/Chi_distribution

    It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.

  7. Noncentral chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_chi-squared...

    From this representation, the noncentral chi-squared distribution is seen to be a Poisson-weighted mixture of central chi-squared distributions. Suppose that a random variable J has a Poisson distribution with mean λ / 2 {\displaystyle \lambda /2} , and the conditional distribution of Z given J = i is chi-squared with k + 2 i degrees of freedom.

  8. Proofs related to chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Proofs_related_to_chi...

    Here is one based on the distribution with 1 degree of freedom. Suppose that X {\displaystyle X} and Y {\displaystyle Y} are two independent variables satisfying X ∼ χ 1 2 {\displaystyle X\sim \chi _{1}^{2}} and Y ∼ χ 1 2 {\displaystyle Y\sim \chi _{1}^{2}} , so that the probability density functions of X {\displaystyle X} and Y ...

  9. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5.