When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dilation (metric space) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(metric_space)

    In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]

  3. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    Together with the translations, all homotheties of an affine (or Euclidean) space form a group, the group of dilations or homothety-translations. These are precisely the affine transformations with the property that the image of every line g is a line parallel to g .

  4. Dilation - Wikipedia

    en.wikipedia.org/wiki/Dilation

    Dilation (operator theory), a dilation of an operator on a Hilbert space; Dilation (morphology), an operation in mathematical morphology; Scaling (geometry), including: Homogeneous dilation , the scalar multiplication operator on a vector space or affine space; Inhomogeneous dilation, where scale factors may differ in different directions

  5. AA postulate - Wikipedia

    en.wikipedia.org/wiki/AA_postulate

    In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...

  6. Dilation (morphology) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(morphology)

    Dilation (usually represented by ⊕) is one of the basic operations in mathematical morphology. Originally developed for binary images, it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.

  7. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    Mathematical Morphology was developed in 1964 by the collaborative work of Georges Matheron and Jean Serra, at the École des Mines de Paris, France.Matheron supervised the PhD thesis of Serra, devoted to the quantification of mineral characteristics from thin cross sections, and this work resulted in a novel practical approach, as well as theoretical advancements in integral geometry and ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations , rotations , reflections , and glide reflections (see below § Classification ).