Ad
related to: thermodynamics variable list
Search results
Results From The WOW.Com Content Network
Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat. Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called heat , and the energy that flows across a boundary as a result ...
The remaining variable, as well as other quantities such as the internal energy and the entropy, would be expressed as state functions of these three variables. The state functions satisfy certain universal constraints, expressed in the laws of thermodynamics , and they depend on the peculiarities of the materials that compose the concrete system.
For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.
The intensive (force) variable is the derivative of the internal energy with respect to the extensive (displacement) variable, while all other extensive variables are held constant. The thermodynamic square can be used as a tool to recall and derive some of the thermodynamic potentials based on conjugate variables.
The distinction between intensive and extensive properties has some theoretical uses. For example, in thermodynamics, the state of a simple compressible system is completely specified by two independent, intensive properties, along with one extensive property, such as mass. Other intensive properties are derived from those two intensive variables.
Thermodynamics is a branch of physics that ... State may be thought of as the instantaneous quantitative description of a system with a set number of variables held ...
Conjugate variables (thermodynamics) Critical variable; Cryoscopic constant; Curie constant; E. Effective temperature; Electronic specific heat; Energy value of coal;
The Onsager reciprocal relations have been considered the fourth law of thermodynamics. [15] [16] [17] They describe the relation between thermodynamic flows and forces in non-equilibrium thermodynamics, under the assumption that thermodynamic variables can be defined locally in a condition of local equilibrium.