Search results
Results From The WOW.Com Content Network
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...
Then the dual basis vectors are given as follows: e 2 is the result of rotating e 1 through an angle of 90° (where the sense is measured by assuming the pair e 1, e 2 to be positively oriented), and then rescaling so that e 2 ⋅ e 2 = 1 holds. e 1 is the result of rotating e 2 through an angle of 90°, and then rescaling so that e 1 ⋅ e 1 ...
In linear algebra, given a vector space with a basis of vectors indexed by an index set (the cardinality of is the dimension of ), the dual set of is a set of vectors in the dual space with the same index set such that and form a biorthogonal system.
The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles. There are two exterior angles at each vertex of the polygon, each determined by extending one of the two sides of the polygon that meet at the vertex; these two angles are vertical and hence are equal.
The set of complex numbers C, numbers that can be written in the form x + iy for real numbers x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and multiplication: (x + iy) + (a + ib) = (x + a) + i(y + b) and c ⋅ (x + iy) = (c ⋅ x) + i(c ⋅ y) for real numbers x, y, a, b and c. The various ...
is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).
The second point is randomly chosen in the same cube. If the angle between the vectors was within π/2 ± 0.037π/2 then the vector was retained. At the next step a new vector is generated in the same hypercube, and its angles with the previously generated vectors are evaluated. If these angles are within π/2 ± 0.037π/2 then the vector is ...
To find the angle of a rotation, once the axis of the rotation is known, select a vector v perpendicular to the axis. Then the angle of the rotation is the angle between v and Rv. A more direct method, however, is to simply calculate the trace: the sum of the diagonal elements of the rotation