When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Loop (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Loop_(graph_theory)

    In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same ...

  3. Multigraph - Wikipedia

    en.wikipedia.org/wiki/Multigraph

    A multigraph with multiple edges (red) and several loops (blue). Not all authors allow multigraphs to have loops. In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called parallel edges [1]), that is, edges that have the same end nodes.

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Graphs as defined in the two definitions above cannot have loops, because a loop joining a vertex to itself is the edge (for an undirected simple graph) or is incident on (for an undirected multigraph) {,} = {} which is not in {{,},}. To allow loops, the definitions must be expanded.

  5. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    The degree or valency of a vertex is the number of edges that are incident to it; for graphs with loops, a loop is counted twice. In a graph of order n, the maximum degree of each vertex is n − 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the degree), and the maximum number of edges is n(n − 1)/2 (or n(n + 1)/2 if loops ...

  6. Multiple edges - Wikipedia

    en.wikipedia.org/wiki/Multiple_edges

    Where graphs are defined so as to allow multiple edges and loops, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph. [1] Where graphs are defined so as to disallow multiple edges and loops, a multigraph or a pseudograph is often defined to mean a "graph" which can have multiple edges. [2]

  7. Incidence matrix - Wikipedia

    en.wikipedia.org/wiki/Incidence_matrix

    The definitions of incidence matrix apply to graphs with loops and multiple edges. The column of an oriented incidence matrix that corresponds to a loop is all zero, unless the graph is signed and the loop is negative; then the column is all zero except for ±2 in the row of its incident vertex.

  8. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    A graph with a loop having vertices labeled by degree. In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1]

  9. Pseudoforest - Wikipedia

    en.wikipedia.org/wiki/Pseudoforest

    A graph is connected if every vertex or edge is reachable from every other vertex or edge. A cycle in an undirected graph is a connected subgraph in which each vertex is incident to exactly two edges, or is a loop. [4] The 21 unicyclic graphs with at most six vertices