When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magic number (physics) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(physics)

    An example is calcium-40, with 20 neutrons and 20 protons, which is the heaviest stable isotope made of the same number of protons and neutrons. Both calcium-48 and nickel-48 are doubly magic because calcium-48 has 20 protons and 28 neutrons while nickel-48 has 28 protons and 20 neutrons. Calcium-48 is very neutron-rich for such a relatively ...

  3. List of elements by stability of isotopes - Wikipedia

    en.wikipedia.org/wiki/List_of_elements_by...

    The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. This is a list of chemical elements by the stability of their isotopes. Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. [1] Overall, there are 251 known stable isotopes in ...

  4. Isotopes of potassium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_potassium

    All other potassium isotopes have half-lives under a day, most under a minute. The least stable is 31 K, a three-proton emitter discovered in 2019; its half-life was measured to be shorter than 10 picoseconds. [5] [6] Stable potassium isotopes have been used for several nutrient cycling studies since potassium is a macronutrient required for ...

  5. Potassium-40 - Wikipedia

    en.wikipedia.org/wiki/Potassium-40

    The radioactive dosage from consuming one banana is around 10 −7 sievert, or 0.1 microsievert, under the assumptions that all of the radiation produced by potassium-40 is absorbed in the body (which is mostly true, as the majority of the radiation is beta-minus radiation, which has a short range) and that the biological half life of potassium ...

  6. Stable nuclide - Wikipedia

    en.wikipedia.org/wiki/Stable_nuclide

    Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, nitrogen-14, and tantalum-180m. Also, only four naturally occurring, radioactive odd–odd nuclides have a half-life >10 9 years: potassium-40, vanadium-50, lanthanum-138, and lutetium-176.

  7. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Strontium-90 is a strong beta emitter with a half-life of 28.8 years. Its fission product yield decreases as the mass of the fissile nuclide increases - fission of 233 U produces more 90 Sr than fission of 239 Pu with fission of 235 U in the middle. A map of 90 Sr contamination around Chernobyl has been published by the IAEA. [1]

  8. List of nuclides - Wikipedia

    en.wikipedia.org/wiki/List_of_nuclides

    A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between 7.0 × 10 8 and 4.83 × 10 11 years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about 4.6 × 10 9 years ...

  9. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    the sum of the rest mass of the individual nuclei = 6.015 + 2.014 = 8.029 u; the total rest mass on the two helium-nuclei = 2 × 4.0026 = 8.0052 u; missing rest mass = 8.029 – 8.0052 = 0.0238 atomic mass units. In a nuclear reaction, the total (relativistic) energy is conserved.