Search results
Results From The WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
Thus many identities on binomial coefficients carry over to the falling and rising factorials. The rising and falling factorials are well defined in any unital ring , and therefore x {\displaystyle x} can be taken to be, for example, a complex number , including negative integers, or a polynomial with complex coefficients, or any complex-valued ...
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
Al-Karaji gave an early formulation of the binomial coefficients and the first description of Pascal's triangle. [13] [14] [15] He is also presumed to have discovered the binomial theorem. [16] In a now lost work known only from subsequent quotation by al-Samaw'al, Al-Karaji introduced the idea of argument by mathematical induction. [17] As ...
In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials .
where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).
The FBISE was established under the FBISE Act 1975. [2] It is an autonomous body of working under the Ministry of Federal Education and Professional Training. [3] The official website of FBISE was launched on June 7, 2001, and was inaugurated by Mrs. Zobaida Jalal, the Minister for Education [4] The first-ever online result of FBISE was announced on 18 August 2001. [5]