When.com Web Search

  1. Ad

    related to: complex number real part calculator with variables and examples

Search results

  1. Results From The WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.

  3. Milne-Thomson method for finding a holomorphic function

    en.wikipedia.org/wiki/Milne-Thomson_method_for...

    (,) is given and () is real on the real axis, 3. only (,) is given, 4. only (,) is given. He is really interested in problems 3 and 4, but the answers to the easier problems 1 and 2 are needed for proving the answers to problems 3 and 4.

  4. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}

  5. Argument (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Argument_(complex_analysis)

    Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...

  6. Holomorphic function - Wikipedia

    en.wikipedia.org/wiki/Holomorphic_function

    The point and () are shown in the = ~. y-axis represents the imaginary part of the complex number of and (). In mathematics , a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space ⁠ C n {\displaystyle \mathbb ...

  7. Entire function - Wikipedia

    en.wikipedia.org/wiki/Entire_function

    (Likewise, if the imaginary part is known in a neighborhood then the function is determined up to a real constant.) In fact, if the real part is known just on an arc of a circle, then the function is determined up to an imaginary constant. [b]} Note however that an entire function is not determined by its real part on all curves. In particular ...

  8. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    exists and is a nonzero complex number. In this case, the point at infinity is a pole of order n if n > 0, and a zero of order | | if n < 0. For example, a polynomial of degree n has a pole of degree n at infinity. The complex plane extended by a point at infinity is called the Riemann sphere.

  9. Complex-base system - Wikipedia

    en.wikipedia.org/wiki/Complex-base_system

    In arithmetic, a complex-base system is a positional numeral system whose radix is an imaginary (proposed by Donald Knuth in 1955 [1] [2]) or complex number (proposed by S. Khmelnik in 1964 [3] and Walter F. Penney in 1965 [4] [5] [6]).