Ads
related to: complex number real part calculator with variables and exponents
Search results
Results From The WOW.Com Content Network
A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.
The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x .
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
The same formula applies to octonions, with a zero real part and a norm equal to 1. These formulas are a direct generalization of Euler's identity, since and are the only complex numbers with a zero real part and a norm (absolute value) equal to 1.
The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a ...
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the n th roots of unity, that is, complex numbers z such that z n = 1. Using the standard extensions of the sine and cosine functions to complex numbers, the formula is valid even when x is an arbitrary complex number.
The complex numbers with integer part all zeroes in the base i – 1 system Of particular interest are the quater-imaginary base (base 2 i ) and the base −1 ± i systems discussed below, both of which can be used to finitely represent the Gaussian integers without sign.