When.com Web Search

  1. Ad

    related to: complex number real part calculator with variables and 2

Search results

  1. Results From The WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.

  3. Milne-Thomson method for finding a holomorphic function

    en.wikipedia.org/wiki/Milne-Thomson_method_for...

    (,) is given and () is real on the real axis, 3. only (,) is given, 4. only (,) is given. He is really interested in problems 3 and 4, but the answers to the easier problems 1 and 2 are needed for proving the answers to problems 3 and 4.

  4. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}

  5. Argument (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Argument_(complex_analysis)

    Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...

  6. Cauchy's integral formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_formula

    We can use a combination of a Möbius transformation and the Stieltjes inversion formula to construct the holomorphic function from the real part on the boundary. For example, the function f(z) = i − iz has real part Re f(z) = Im z. On the unit circle this can be written ⁠ ⁠ i / z ⁠ − iz / 2 ⁠. Using the Möbius transformation and ...

  7. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a ...

  8. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  9. Split-complex number - Wikipedia

    en.wikipedia.org/wiki/Split-complex_number

    In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit j satisfying =, where . A split-complex number has two real number components x and y , and is written z = x + y j . {\displaystyle z=x+yj.}