Search results
Results From The WOW.Com Content Network
Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays , or particles such as beta particles , alpha particles , fission products , and ...
Neutron activation analysis (NAA) is a nuclear process used for determining the concentrations of elements in many materials. NAA allows discrete sampling of elements as it disregards the chemical form of a sample, and focuses solely on atomic nuclei. The method is based on neutron activation and thus requires a neutron source.
An activation product is a material that has been made radioactive by the process of neutron activation.. Fission products and actinides produced by neutron absorption of nuclear fuel itself are normally referred to by those specific names, and activation product reserved for products of neutron capture by other materials, such as structural components of the nuclear reactor or nuclear bomb ...
By neutron irradiation of objects, it is possible to induce radioactivity; this activation of stable isotopes to create radioisotopes is the basis of neutron activation analysis. A high-energy most interesting object which has been studied in this way is the hair of Napoleon's head, which has been examined for its arsenic content. [1]
The 152 Eu (half life 13.54 year) and 154 Eu (half life 8.59 year) were mainly formed by the neutron activation of the europium in the soil, it is clear that the level of radioactivity for these isotopes is highest where the neutron dose to the soil was larger.
The UREX process is a PUREX process which has been modified to prevent the plutonium being extracted. This can be done by adding a plutonium reductant before the first metal extraction step. In the UREX process, ~99.9% of the uranium and >95% of technetium are separated from each other and the other fission products and actinides. The key is ...
R-process describes neutron capture in a region of high neutron flux, such as during supernova nucleosynthesis after core-collapse, and yields neutron-rich nuclides. S-process describes neutron capture that is slow relative to the rate of beta decay , as for stellar nucleosynthesis in some stars, and yields nuclei with stable nuclear shells .
Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. [1] Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons , which are repelled electrostatically .