When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  3. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains . It is the set of all finite linear combinations of the elements of S , [ 2 ] and the intersection of all linear subspaces that contain S . {\displaystyle S.}

  4. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The row space, or coimage, of a matrix A is the span of the row vectors of A. By the above reasoning, the kernel of A is the orthogonal complement to the row space. That is, a vector x lies in the kernel of A , if and only if it is perpendicular to every vector in the row space of A .

  5. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    As a consequence, a rank-k matrix can be written as the sum of k rank-1 matrices, but not fewer. The rank of a matrix plus the nullity of the matrix equals the number of columns of the matrix. (This is the rank–nullity theorem.) If A is a matrix over the real numbers then the rank of A and the rank of its corresponding Gram matrix are equal.

  6. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    The reduced matrix has the same null space as the original. Row reduction does not change the span of the row vectors, i.e. the reduced matrix has the same row space as the original. Row reduction does not affect the linear dependence of the column vectors.

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Matrix calculations can be often performed with different techniques. Many problems can be solved by both direct algorithms and iterative approaches. For example, the eigenvectors of a square matrix can be obtained by finding a sequence of vectors x n converging to an eigenvector when n tends to infinity. [43]

  8. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Sets of representatives of matrix conjugacy classes for Jordan normal form or rational canonical forms in general do not constitute linear or affine subspaces in the ambient matrix spaces. Vladimir Arnold posed [ 16 ] a problem: Find a canonical form of matrices over a field for which the set of representatives of matrix conjugacy classes is a ...

  9. Krylov subspace - Wikipedia

    en.wikipedia.org/wiki/Krylov_subspace

    They try to avoid matrix-matrix operations, but rather multiply vectors by the matrix and work with the resulting vectors. Starting with a vector , one computes , then one multiplies that vector by to find and so on. All algorithms that work this way are referred to as Krylov subspace methods; they are among the most successful methods ...