Search results
Results From The WOW.Com Content Network
A chord (from the Latin chorda, meaning "bowstring") of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow").
A circle not passing through O inverts to a circle not passing through O. If the circle meets the reference circle, these invariant points of intersection are also on the inverse circle. A circle (or line) is unchanged by inversion if and only if it is orthogonal to the reference circle at the points of intersection. [5] Additional properties ...
The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2,R). The group of rotations alone is the circle group T. All circles are similar. [12]
A straight line through a circle's center is orthogonal to it, and if straight lines are also considered as a kind of generalized circles, for instance in inversive geometry, then an orthogonal pair of lines or line and circle are orthogonal generalized circles.
In this case the circle with radius zero is a double point, and thus any line passing through it intersects the point with multiplicity two, hence is "tangent". If one circle has radius zero, a bitangent line is simply a line tangent to the circle and passing through the point, and is counted with multiplicity two.
A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line ...
Step 1 (red): construct a circle with center at P and some fixed radius r to create points A′ and B′ on the line AB, which will be equidistant from P. Step 2 (green): construct circles centered at A′ and B′ having radius r. P and Q will be the points of intersection of these two circles. Point Q is then the reflection of point P through ...
The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side (y ≥ 0), consists of the points (x, y), with = () = (), where t is a real parameter corresponding to the angle through which the rolling circle has rotated.