When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Twisted cubic - Wikipedia

    en.wikipedia.org/wiki/Twisted_cubic

    The union of the tangent and secant lines (the secant variety) of a twisted cubic C fill up P 3 and the lines are pairwise disjoint, except at points of the curve itself. In fact, the union of the tangent and secant lines of any non-planar smooth algebraic curve is three-dimensional.

  3. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2] The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

  4. Cesàro equation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_equation

    In geometry, the Cesàro equation of a plane curve is an equation relating the curvature (κ) at a point of the curve to the arc length (s) from the start of the curve to the given point. It may also be given as an equation relating the radius of curvature (R) to arc length. (These are equivalent because R = ⁠ 1 / κ ⁠.)

  5. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    The Gaussian curvature K = κ 1 κ 2 and the mean curvature H = (κ 1 + κ 2)/2 can be computed as follows: =, = + (). Up to a sign, these quantities are independent of the parametrization used, and hence form important tools for analysing the geometry of the surface.

  6. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  7. Pedal curve - Wikipedia

    en.wikipedia.org/wiki/Pedal_curve

    Take P to be the origin. For a curve given by the equation F(x, y)=0, if the equation of the tangent line at R=(x 0, y 0) is written in the form ⁡ + ⁡ = then the vector (cos α, sin α) is parallel to the segment PX, and the length of PX, which is the distance from the tangent line to the origin, is p.

  8. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    It is the locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in polar coordinates ( r , θ ) it can be described by the equation r = b ⋅ θ {\displaystyle r=b\cdot \theta } with real number b .

  9. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The development of calculus in the seventeenth century provided a more systematic way of computing them. [3] Curvature of general surfaces was first studied by Euler. In 1760 [4] he proved a formula for the curvature of a plane section of a surface and in 1771 [5] he considered surfaces represented in a parametric form.