Search results
Results From The WOW.Com Content Network
For example, if A = {1,2,3,4}, where the components are x, y, z, and w respectively, you could compute B = A.wwxy, whereupon B would equal {4,4,1,2}. Additionally, one could create a two-dimensional vector with A.wx or a five-dimensional vector with A.xyzwx. Combining vectors and swizzling can be employed in various ways.
Automatic vectorization, in parallel computing, is a special case of automatic parallelization, where a computer program is converted from a scalar implementation, which processes a single pair of operands at a time, to a vector implementation, which processes one operation on multiple pairs of operands at once.
C++ vectors do not support in-place reallocation of memory, by design; i.e., upon reallocation of a vector, the memory it held will always be copied to a new block of memory using its elements' copy constructor, and then released.
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation on a set is a binary function whose two domains and the codomain are the same set.
The three vectors spanning a parallelepiped have triple product equal to its volume. (However, beware that the direction of the arrows in this diagram are incorrect.) In exterior algebra and geometric algebra the exterior product of two vectors is a bivector, while the exterior product of three vectors is a trivector. A bivector is an oriented ...
The kernel may be expressed as the subspace (x, 0) < V: the value of x is the freedom in a solution – while the cokernel may be expressed via the map W → R, (,) (): given a vector (a, b), the value of a is the obstruction to there being a solution. An example illustrating the infinite-dimensional case is afforded by the map f: R ∞ → R ...
A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. A bilinear map can also be defined for modules. For that, see the article pairing.