Ads
related to: tessellation examples easy to draw for beginners
Search results
Results From The WOW.Com Content Network
The fundamental region is a shape such as a rectangle that is repeated to form the tessellation. [22] For example, a regular tessellation of the plane with squares has a meeting of four squares at every vertex. [18] The sides of the polygons are not necessarily identical to the edges of the tiles.
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .
Hyperbolic; Article Vertex configuration Schläfli symbol Image Snub tetrapentagonal tiling: 3 2.4.3.5 : sr{5,4} Snub tetrahexagonal tiling: 3 2.4.3.6 : sr{6,4} Snub tetraheptagonal tiling
In computer graphics, tessellation is the dividing of datasets of polygons (sometimes called vertex sets) presenting objects in a scene into suitable structures for rendering. Especially for real-time rendering , data is tessellated into triangles , for example in OpenGL 4.0 and Direct3D 11 .
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille. The internal angle of the square is 90 degrees so four squares at a point make a full 360 degrees.
The union of all edges of a Cairo tiling is the same as the union of two tilings of the plane by hexagons.Each hexagon of one tiling surrounds two vertices of the other tiling, and is divided by the hexagons of the other tiling into four of the pentagons in the Cairo tiling. [4]
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees.
There are 28 convex examples in Euclidean 3-space, [1] also called the Archimedean honeycombs. A honeycomb is called regular if the group of isometries preserving the tiling acts transitively on flags, where a flag is a vertex lying on an edge lying on a face lying on a cell. Every regular honeycomb is automatically uniform.