Search results
Results From The WOW.Com Content Network
the slope field is an array of slope marks in the phase space (in any number of dimensions depending on the number of relevant variables; for example, two in the case of a first-order linear ODE, as seen to the right). Each slope mark is centered at a point (,,, …,) and is parallel to the vector
Fig. 1: Isoclines (blue), slope field (black), and some solution curves (red) of y' = xy. The solution curves are y = C e x 2 / 2 {\displaystyle y=Ce^{x^{2}/2}} . Given a family of curves , assumed to be differentiable , an isocline for that family is formed by the set of points at which some member of the family attains a given slope .
Let M be a Banach manifold of class C r with r ≥ 2. As usual, TM denotes the tangent bundle of M with its natural projection π M : TM → M given by : (,). A vector field on M is a cross-section of the tangent bundle TM, i.e. an assignment to every point of the manifold M of a tangent vector to M at that point.
Keeping in mind that the slope is at most , the problem now presents itself as to whether the next point should be at (+,) or (+, +). Perhaps intuitively, the point should be chosen based upon which is closer to the line at +. If it is closer to the former then include the former point on the line, if the latter then the latter.
To find either of the single derivatives, or , using that method, find the slope between the two surrounding points in the appropriate axis. For example, to calculate f x {\displaystyle f_{x}} for one of the points, find f ( x , y ) {\displaystyle f(x,y)} for the points to the left and right of the target point and calculate their slope, and ...
The name Desmos came from the Greek word δεσμός which means a bond or a tie. [6] In May 2022, Amplify acquired the Desmos curriculum and teacher.desmos.com. Some 50 employees joined Amplify. Desmos Studio was spun off as a separate public benefit corporation focused on building calculator products and other math tools. [7]
A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .
Orthogonal trajectories are used in mathematics, for example as curved coordinate systems (i.e. elliptic coordinates) and appear in physics as electric fields and their equipotential curves. If the trajectory intersects the given curves by an arbitrary (but fixed) angle, one gets an isogonal trajectory .