Ads
related to: division methods
Search results
Results From The WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Modern calculators and computers compute division either by methods similar to long division, or by faster methods; see Division algorithm. In modular arithmetic (modulo a prime number) and for real numbers, nonzero numbers have a multiplicative inverse. In these cases, a division by x may be computed as the product by the multiplicative ...
Caldrini (1491) is the earliest printed example of long division, known as the Danda method in medieval Italy, [4] and it became more practical with the introduction of decimal notation for fractions by Pitiscus (1608). The specific algorithm in modern use was introduced by Henry Briggs c. 1600. [5]
Blomqvist's method [1] is an abbreviated version of the long division above. This pen-and-paper method uses the same algorithm as polynomial long division, but mental calculation is used to determine remainders. This requires less writing, and can therefore be a faster method once mastered.
In arithmetic, short division is a division algorithm which breaks down a division problem into a series of easier steps. It is an abbreviated form of long division — whereby the products are omitted and the partial remainders are notated as superscripts .
The methods of computation are called integer division algorithms, the best known of which being long division. Euclidean division, and algorithms to compute it, are fundamental for many questions concerning integers, such as the Euclidean algorithm for finding the greatest common divisor of two integers, [ 1 ] and modular arithmetic , for ...
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .
Compared to the short division and long division methods that are traditionally taught, chunking may seem strange, unsystematic, and arbitrary. However, it is argued that chunking, rather than moving straight to short division, gives a better introduction to division, in part because the focus is always holistic, focusing throughout on the ...