Search results
Results From The WOW.Com Content Network
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
If the remainder is 2, swap 1 and 3 in odd list and move 5 to the end (3, 1, 7, 5). If the remainder is 3, move 2 to the end of even list and 1,3 to the end of odd list (4, 6, 8, 2 – 5, 7, 9, 1, 3). Append odd list to the even list and place queens in the rows given by these numbers, from left to right (a2, b4, c6, d8, e3, f1, g7, h5).
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
Edge disjoint shortest pair algorithm is an algorithm in computer network routing. [1] The algorithm is used for generating the shortest pair of edge disjoint paths between a given pair of vertices. For an undirected graph G(V, E), it is stated as follows: Run the shortest path algorithm for the given pair of vertices
Filled nodes are the visited ones, with color representing the distance: the redder, the closer (to the start node). Nodes in all the different directions are explored uniformly, appearing more-or-less as a circular wavefront as Dijkstra's algorithm uses a heuristic of picking the shortest known path so far.
A central problem in algorithmic graph theory is the shortest path problem.One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph.
When modelling relations between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an affiliation network, a type of bipartite graph used in social network analysis.
Algorithms for finding strongly connected components may be used to solve 2-satisfiability problems (systems of Boolean variables with constraints on the values of pairs of variables): as Aspvall, Plass & Tarjan (1979) showed, a 2-satisfiability instance is unsatisfiable if and only if there is a variable v such that v and its negation are both ...