When.com Web Search

  1. Ad

    related to: golden mean ratio in architecture diagram

Search results

  1. Results From The WOW.Com Content Network
  2. List of works designed with the golden ratio - Wikipedia

    en.wikipedia.org/wiki/List_of_works_designed...

    Georges Seurat, 1887-88, Parade de cirque (Circus Sideshow) with a 4 : 6 ratio division and golden mean overlay, showing only a close approximation to the divine proportion. Matila Ghyka [30] and others [31] contend that Georges Seurat used golden ratio proportions in paintings like Parade de cirque, Le Pont de Courbevoie, and Bathers at ...

  3. Proportion (architecture) - Wikipedia

    en.wikipedia.org/wiki/Proportion_(architecture)

    In classical architecture, proportions were set by the radii of columns. Proportion is a central principle of architectural theory and an important connection between mathematics and art . It is the visual effect of the relationship of the various objects and spaces that make up a structure to one another and to the whole.

  4. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.

  5. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    Several properties and common features of the Penrose tilings involve the golden ratio = + (approximately 1.618). [31] [32] This is the ratio of chord lengths to side lengths in a regular pentagon, and satisfies φ = 1 + 1/ φ.

  6. Golden triangle (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Golden_triangle_(mathematics)

    A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:

  7. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  8. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    A root rectangle is a rectangle in which the ratio of the longer side to the shorter is the square root of an integer, such as √ 2, √ 3, etc. [2] The root-2 rectangle (ACDK in Fig. 10) is constructed by extending two opposite sides of a square to the length of the square's diagonal.

  9. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    The ratio of the progression of side lengths is , where = (+) / is the golden ratio, and the progression can be written: ::, or approximately 1 : 1.272 : 1.618. Squares on the edges of this triangle have areas in another geometric progression, 1 : φ : φ 2 {\displaystyle 1:\varphi :\varphi ^{2}} .