Ad
related to: normal curve parameterization formula physics equation calculator
Search results
Results From The WOW.Com Content Network
The formulas given above for T, N, and B depend on the curve being given in terms of the arclength parameter. This is a natural assumption in Euclidean geometry, because the arclength is a Euclidean invariant of the curve. In the terminology of physics, the arclength parametrization is a natural choice of gauge. However, it may be awkward to ...
In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. [1] "
In addition to curves and surfaces, parametric equations can describe manifolds and algebraic varieties of higher dimension, with the number of parameters being equal to the dimension of the manifold or variety, and the number of equations being equal to the dimension of the space in which the manifold or variety is considered (for curves the ...
The normal section of a surface at a particular point is the curve produced by the intersection of that surface with a normal plane. [1] [2] [3] The curvature of the normal section is called the normal curvature. If the surface is bow or cylinder shaped, the maximum and the minimum of these curvatures are the principal curvatures.
In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point. A normal vector of length one is called a unit normal vector.
A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.
In differential geometry, the fundamental theorem of space curves states that every regular curve in three-dimensional space, with non-zero curvature, has its shape (and size or scale) completely determined by its curvature and torsion.
Parametrization, also spelled parameterization, parametrisation or parameterisation, is the process of defining or choosing parameters. Parametrization may refer more specifically to: Parametrization (geometry), the process of finding parametric equations of a curve, surface, etc. Parametrization by arc length, a natural parametrization of a curve