Ad
related to: parametric representation of a sphere equationstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
A parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters :. Parametric representation is a very general way to specify a surface, as well as implicit representation .
For example, the equations = = form a parametric representation of the unit circle, where t is the parameter: A point (x, y) is on the unit circle if and only if there is a value of t such that these two equations generate that point.
With help of this parametric representation it is easy to prove the statement: The area of the half sphere (containing Viviani's curve) minus the area of the two windows is . The area of the upper right part of Viviani's window (see diagram) can be calculated by an integration :
For a plane, a sphere, and a torus there exist simple parametric representations. This is not true for the fourth example. The implicit function theorem describes conditions under which an equation (,,) = can be solved (at least implicitly) for x, y or z. But in general the solution may not be made explicit.
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle.Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2]
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
Parametric equations of surfaces are often irregular at some points. For example, all but two points of the unit sphere, are the image, by the above parametrization, of exactly one pair of Euler angles (modulo 2 π). For the remaining two points (the north and south poles), one has cos v = 0, and the longitude u may take any values. Also, there ...
ellipsoid as an affine image of the unit sphere. The key to a parametric representation of an ellipsoid in general position is the alternative definition: An ellipsoid is an affine image of the unit sphere. An affine transformation can be represented by a translation with a vector f 0 and a regular 3 × 3 matrix A: