When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.

  3. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    Selection of the characteristic length should be in the direction of growth (or thickness) of the boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing natural convection, or the diameter of a sphere ...

  4. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    If the elements of the cylinder are perpendicular to the planes containing the bases, the cylinder is a right cylinder, otherwise it is called an oblique cylinder. If the bases are disks (regions whose boundary is a circle) the cylinder is called a circular cylinder. In some elementary treatments, a cylinder always means a circular cylinder. [2]

  5. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    is the Reynolds number with the cylinder diameter as its characteristic length; Pr {\displaystyle \Pr } is the Prandtl number . The Churchill–Bernstein equation is valid for a wide range of Reynolds numbers and Prandtl numbers, as long as the product of the two is greater than or equal to 0.2, as defined above.

  6. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    For a sphere in a fluid, the characteristic length-scale is the diameter of the sphere and the characteristic velocity is that of the sphere relative to the fluid some distance away from the sphere, such that the motion of the sphere does not disturb that reference parcel of fluid. The density and viscosity are those belonging to the fluid. [23]

  7. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  8. AOL Mail

    mail.aol.com/?rp=webmail-std/en-us/basic

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Strouhal number - Wikipedia

    en.wikipedia.org/wiki/Strouhal_number

    L = characteristic length of robot, U = characteristic speed. The analysis of a microrobot using the Strouhal number allows one to assess the impact that the motion of the fluid it is in has on its motion in relation to the inertial forces acting on the robot–regardless of the dominant forces being elastic or not.