Search results
Results From The WOW.Com Content Network
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Rigor is a cornerstone quality of mathematics, and can play an important role in preventing mathematics from degenerating into fallacies. well-behaved An object is well-behaved (in contrast with being Pathological ) if it satisfies certain prevailing regularity properties, or if it conforms to mathematical intuition (even though intuition can ...
A concept definition is similar to the usual notion of a definition in mathematics, with the distinction that it is personal to an individual: "a personal concept definition can differ from a formal concept definition, the latter being a concept definition which is accepted by the mathematical community at large." [1]
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
Fundamental (or rudimentary) numeracy skills include understanding of the real number line, time, measurement, and estimation. [6] Fundamental skills include basic skills (the ability to identify and understand numbers) and computational skills (the ability to perform simple arithmetical operations and compare numerical magnitudes).
The consequence of these features is that a mathematical text is generally not understandable without some prerequisite knowledge. For example, the sentence "a free module is a module that has a basis" is perfectly correct, although it appears only as a grammatically correct nonsense, when one does not know the definitions of basis, module, and free module.
The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem.
Aristotle also thought that quantity alone does not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart. [5] Auguste Comte's definition tried to explain the role of mathematics in coordinating phenomena in all other ...