Search results
Results From The WOW.Com Content Network
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements . [ 1 ]
The substitution instance tσ of a ground substitution is a ground term if all of t ' s variables are in σ ' s domain, i.e. if vars(t) ⊆ dom(σ). A substitution σ is called a linear substitution if tσ is a linear term for some (and hence every) linear term t containing precisely the variables of σ ' s domain, i.e. with vars(t) = dom(σ).
In the mid-19th century, flaws in Euclid's axioms for geometry became known. [12] In addition to the independence of the parallel postulate, established by Nikolai Lobachevsky in 1826, [13] mathematicians discovered that certain theorems taken for granted by Euclid were not in fact provable from his axioms. Among these is the theorem that a ...
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
One example is the parallel postulate, which is neither provable nor refutable from the remaining axioms of Euclidean geometry. Mathematicians have shown there are many statements that are neither provable nor disprovable in Zermelo–Fraenkel set theory with the axiom of choice (ZFC), the standard system of set theory in mathematics (assuming ...
An axiom P is independent if there are no other axioms Q such that Q implies P. . In many cases independence is desired, either to reach the conclusion of a reduced set of axioms, or to be able to replace an independent axiom to create a more concise system (for example, the parallel postulate is independent of other axioms of Euclidean geometry, and provides interesting results when negated ...
To draw the parallel (h) to a diameter g through any given point P. Chose auxiliary point C anywhere on the straight line through B and P outside of BP. (Steiner) In the branch of mathematics known as Euclidean geometry, the Poncelet–Steiner theorem is one of several results concerning compass and straightedge constructions having additional restrictions imposed on the traditional rules.
In absolute geometry, the Saccheri–Legendre theorem states that the sum of the angles in a triangle is at most 180°. [1] Absolute geometry is the geometry obtained from assuming all the axioms that lead to Euclidean geometry with the exception of the axiom that is equivalent to the parallel postulate of Euclid.