Search results
Results From The WOW.Com Content Network
Volume Cuboid: a, b = the sides of the cuboid's base c = the third side of the cuboid Right-rectangular pyramid: a, b = the sides of the base h = the distance is from ...
Cuboid – , where , , and are the sides' length; Cylinder – π r 2 h {\textstyle \pi r^{2}h} , where r {\textstyle r} is the base's radius and h {\textstyle h} is the cone's height; Ellipsoid – 4 3 π a b c {\textstyle {\frac {4}{3}}\pi abc} , where a {\textstyle a} , b {\textstyle b} , and c {\textstyle c} are the semi-major and semi ...
Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.
The volume of a cuboid is the product of its length, width, and height. Because all the edges of a cube are equal in length, it is: [ 4 ] V = a 3 . {\displaystyle V=a^{3}.} One special case is the unit cube , so-named for measuring a single unit of length along each edge.
A rectangular cuboid is a convex polyhedron with six rectangle faces. These are often called "cuboids", without qualifying them as being rectangular, but a cuboid can also refer to a more general class of polyhedra, with six quadrilateral faces. [1] The dihedral angles of a rectangular cuboid are all right angles, and its opposite faces are ...
The rectangular cuboid (six rectangular faces), cube ... Hence the volume of a parallelepiped is the product of the base area and the height ...
This more restrictive type of cuboid is also known as a rectangular cuboid, right cuboid, rectangular box, rectangular hexahedron, right rectangular prism, or rectangular parallelepiped. [5] Polyhedron: Flat polygonal faces, straight edges and sharp corners or vertices: Small stellated dodecahedron: Toroidal polyhedron: Uniform polyhedron
The volume of a prism is the product of the area of the base by the height, i.e. the distance between the two base faces (in the case of a non-right prism, note that this means the perpendicular distance). The volume is therefore: =, where B is the base area and h is the height.