When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_Pythagorean_theorem

    In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem [1] or the upside down Pythagorean theorem [2]) is as follows: [3] Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  4. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length , then applying the Pythagorean theorem and definitions of the

  5. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae , it is one of the basic relations between the sine and cosine functions.

  6. Yuktibhāṣā - Wikipedia

    en.wikipedia.org/wiki/Yuktibhāṣā

    The first four chapters of the contain elementary mathematics, such as division, the Pythagorean theorem, square roots, etc. [11] Novel ideas are not discussed until the sixth chapter on circumference of a circle. Yuktibhāṣā contains a derivation and proof for the power series of inverse tangent, discovered by Madhava. [5]

  7. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    By the Pythagorean theorem we have b 2 = h 2 + d 2 and a 2 = h 2 + (c − d) 2 according to the figure at the right. Subtracting these yields a 2 − b 2 = c 2 − 2cd. This equation allows us to express d in terms of the sides of the triangle: = + +.

  8. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...

  9. Talk:Inverse Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Talk:Inverse_Pythagorean...

    "Inverse" (without the qualifier "multiplicative" attached) seems like it has a much higher potential for confusion, for example with the converse of the Pythagorean theorem, whereas reciprocal is clear and unambiguous. –jacobolus 19:03, 30 March 2023 (UTC)