Search results
Results From The WOW.Com Content Network
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [ 1 ] [ 2 ] [ 3 ] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem , proven in 1995 by Andrew Wiles ), have shaped much of mathematical history as new areas of mathematics are developed in ...
In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces , which states that every simply connected Riemann surface can be ...
Uniformity conjecture: diophantine geometry: n/a: Unique games conjecture: number theory: n/a: Vandiver's conjecture: number theory: Ernst Kummer and Harry Vandiver: Virasoro conjecture: algebraic geometry: Miguel Ángel Virasoro: Vizing's conjecture: graph theory: Vadim G. Vizing: Vojta's conjecture: number theory: ⇒abc conjecture: Paul ...
A conjecture is a proposition that is unproven. Conjectures are related to hypotheses , which in science are empirically testable conjectures. In mathematics , a conjecture is an unproven proposition that appears correct.
Kawamata–Viehweg vanishing theorem (algebraic geometry) Kawasaki's theorem (mathematics of paper folding) Kelvin's circulation theorem ; Kempf–Ness theorem (algebraic geometry) Kepler conjecture (discrete geometry) Kharitonov's theorem (control theory) Khinchin's theorem (probability) Killing–Hopf theorem (Riemannian geometry)
The Poincaré conjecture was a mathematical problem in the field of geometric topology. In terms of the vocabulary of that field, it says the following: Poincaré conjecture. Every three-dimensional topological manifold which is closed, connected, and has trivial fundamental group is homeomorphic to the three-dimensional sphere.
The Hodge conjecture generalises this statement to higher dimensions. In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.
The conjecture, going back to the 1950s, was completely proven by 1999 using the ideas of Andrew Wiles, who proved it in 1994 for a large family of elliptic curves. [17] There are several formulations of the conjecture. Showing that they are equivalent was a main challenge of number theory in the second half of the 20th century.