Search results
Results From The WOW.Com Content Network
[1] [2] There is debate as to whether or not this channel is expressed in the cell surface membrane. [3] [4] [5] This major protein of the outer mitochondrial membrane of eukaryotes forms a voltage-dependent anion-selective channel (VDAC) that behaves as a general diffusion pore for small hydrophilic molecules.
In essence, the Goldman formula expresses the membrane potential as a weighted average of the reversal potentials for the individual ion types, weighted by permeability. (Although the membrane potential changes about 100 mV during an action potential, the concentrations of ions inside and outside the cell do not change significantly.
Although Zamzami et al. suggest that the release of cytochrome c is indirectly mediated by the PT pore on the inner mitochondrial membrane, [12] strong evidence suggest an earlier implication of the MAC pore on the outer membrane. [13] [14] Another theory suggests that Rho proteins play a role in Bcl-2, Mcl-1 and Bid activation. Rho inhibition ...
The mitochondria-associated ER membranes (MAMs), play role in cell death modulation. Mitochondrial outer membrane permeabilization (MOMP), is a reason of the higher matrix Ca 2+ levels, which is acts as a trigger for apoptosis. MOMP is the process before apoptosis, which is accompanied to permeability of the inner membrane of the mitochondria ...
The mitochondrial calcium uniporter (MCU) is a protein complex located in the inner mitochondrial matrix that functions to take up calcium ions (Ca2+) into the matrix from the cytoplasm. [20] The transport of calcium ions is specifically used in cellular function for regulating energy production in the mitochondria, cytosolic calcium signaling ...
The numerous invaginations of the membrane are called cristae, separated by crista junctions from the inner boundary membrane juxtaposed to the outer membrane. Cristae significantly increase the total membrane surface area compared to a smooth inner membrane and thereby the available working space for oxidative phosphorylation.
It is an active pump that generates a proton concentration gradient across the inner mitochondrial membrane, because there are more protons outside the matrix than inside. The difference in pH and electric charge (ignoring differences in buffer capacity) creates an electrochemical potential difference that works similar to that of a battery or ...
Most mutations of mitochondrial membrane transporters are autosomal recessive. Mutations to transporters within the inner mitochondrial membrane mostly affect high-energy tissues due to the disruption of oxidative phosphorylation. [4] [44] For example, decreased mitochondrial function has been linked to heart failure and hypertrophy. This ...