Search results
Results From The WOW.Com Content Network
In fluid mechanics, pipe flow is a type of fluid flow within a closed conduit, such as a pipe, duct or tube. It is also called as Internal flow. [1] The other type of flow within a conduit is open channel flow. These two types of flow are similar in many ways, but differ in one important aspect.
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
The parameter that becomes "choked" or "limited" is the fluid velocity. Choked flow is a fluid dynamic condition associated with the Venturi effect. When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe) into a lower pressure environment ...
Henri Pitot discovered that the velocity of a fluid was proportional to the square root of its head in the early 18th century. It takes energy to push a fluid through a pipe, and Antoine de Chézy discovered that the hydraulic head loss was proportional to the velocity squared. [5]
In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid.
At the end of this pipe, there was a flow control valve used to vary the water velocity inside the tube. When the velocity was low, the dyed layer remained distinct throughout the entire length of the large tube. When the velocity was increased, the layer broke up at a given point and diffused throughout the fluid's cross-section.
In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no boundary layer adjacent to the inner wall of the pipe.
where v is the velocity of the fluid, ρ is its density, r is the radius of the tube, and μ is the dynamic viscosity of the fluid. A turbulent flow in a fluid is defined by the critical Reynolds number, for a closed pipe this works out to approximately