Search results
Results From The WOW.Com Content Network
Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.
2. Point intersection. 3. Two point intersection. In analytic geometry, a line and a sphere can intersect in three ways: No intersection at all; Intersection in exactly one point; Intersection in two points. Methods for distinguishing these cases, and determining the coordinates for the
The value of the line function at this midpoint is the sole determinant of which point should be chosen. The adjacent image shows the blue point (2,2) chosen to be on the line with two candidate points in green (3,2) and (3,3). The black point (3, 2.5) is the midpoint between the two candidate points.
In such a case, L will always intersect the input line segments in a set of points whose vertical ordering changes only at a finite set of discrete events. Specifically, a discrete event can either be associated with an endpoint (left or right) of a line-segment or intersection point of two line-segments.
Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of ...
The point at which the parallel lines intersect depends only on the slope of the lines, not at all on their y-intercept. In the affine plane, a line extends in two opposite directions. In the projective plane, the two opposite directions of a line meet each other at a point on the line at infinity.
The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.