Search results
Results From The WOW.Com Content Network
The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment intersection before calculating its exact point. [3]
C# (/ ˌ s iː ˈ ʃ ɑːr p / see SHARP) [b] is a general-purpose high-level programming language supporting multiple paradigms.C# encompasses static typing, [16]: 4 strong typing, lexically scoped, imperative, declarative, functional, generic, [16]: 22 object-oriented (class-based), and component-oriented programming disciplines.
In fixed format code, line indentation is significant. Columns 1–6 and columns from 73 onwards are ignored. If a * or / is in column 7, then that line is a comment. Until COBOL 2002, if a D or d was in column 7, it would define a "debugging line" which would be ignored unless the compiler was instructed to compile it. Cobra
For example, (a > 0 and not flag) and (a > 0 && !flag) specify the same behavior. As another example, the bitand keyword may be used to replace not only the bitwise-and operator but also the address-of operator, and it can be used to specify reference types (e.g., int bitand ref = n).
Klamer Schutte's Clippoly, a polygon clipper written in C++. Michael Leonov's poly_Boolean, a C++ library, which extends the Schutte algorithm. Angus Johnson's Clipper, an open-source freeware library (written in Delphi, C++ and C#) that's based on the Vatti algorithm. clipper2 crate, a safe Rust wrapper for Angus Johnson's Clipper2 library.
This is a feature of C# 9.0. Similar to in scripting languages, top-level statements removes the ceremony of having to declare the Program class with a Main method. Instead, statements can be written directly in one specific file, and that file will be the entry point of the program. Code in other files will still have to be defined in classes.
In computer graphics, the Liang–Barsky algorithm (named after You-Dong Liang and Brian A. Barsky) is a line clipping algorithm. The Liang–Barsky algorithm uses the parametric equation of a line and inequalities describing the range of the clipping window to determine the intersections between the line and the clip window.
The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.