When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  3. Bayesian multivariate linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_multivariate...

    The classical, frequentists linear least squares solution is to simply estimate the matrix of regression coefficients ^ using the Moore-Penrose pseudoinverse: ^ = (). To obtain the Bayesian solution, we need to specify the conditional likelihood and then find the appropriate conjugate prior.

  4. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    It is one approach to handling the "errors in variables" problem, and is also sometimes used even when the covariates are assumed to be error-free. Linear Template Fit (LTF) [7] combines a linear regression with (generalized) least squares in order to determine the best estimator. The Linear Template Fit addresses the frequent issue, when the ...

  5. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Main loop: while R ≠ ∅ and max(w R) > ε: Let j in R be the index of max(w R) in w. Add j to P. Remove j from R. Let A P be A restricted to the variables included in P. Let s be vector of same length as x. Let s P denote the sub-vector with indexes from P, and let s R denote the sub-vector with indexes from R. Set s P = ((A P) T A P) −1 ...

  6. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression (not to be confused with multivariate linear regression). [10] Multiple linear regression is a generalization of simple linear regression to the case of more than one ...

  8. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  9. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    Thus, for example, MARS models can incorporate logistic regression to predict probabilities. Non-linear regression is used when the underlying form of the function is known and regression is used only to estimate the parameters of that function. MARS, on the other hand, estimates the functions themselves, albeit with severe constraints on the ...