Search results
Results From The WOW.Com Content Network
This is an illustration of the shortest vector problem (basis vectors in blue, shortest vector in red). In the SVP, a basis of a vector space V and a norm N (often L 2) are given for a lattice L and one must find the shortest non-zero vector in V, as measured by N, in L.
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades. Besides having polynomial time complexity, interior-point methods are also effective in practice.
Vector optimization is a subarea of mathematical optimization where optimization problems with a vector-valued objective functions are optimized with respect to a given partial ordering and subject to certain constraints.
It is helpful to write the numbers C j in a different form, by choosing three numbers θ 1, θ 2, θ 3 with e 2πiθ j = C j: (+) = Again, the θ j are three numbers which do not depend on r. Define k = θ 1 b 1 + θ 2 b 2 + θ 3 b 3 , where b j are the reciprocal lattice vectors (see above).
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations.
Vectorization is a unitary transformation from the space of n×n matrices with the Frobenius (or Hilbert–Schmidt) inner product to C n 2: (†) = † (), where the superscript † denotes the conjugate transpose.