Search results
Results From The WOW.Com Content Network
True specific gravity of a liquid can be expressed mathematically as: =, where is the density of the sample and is the density of water. The apparent specific gravity is simply the ratio of the weights of equal volumes of sample and water in air: =,,, where , represents the weight of the sample measured in air and , the weight of an equal ...
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =
In that case, the specific volume would equal 0.4672 in 3 /lb. However, if the temperature is changed to 1160 °R, the specific volume of the super heated steam would have changed to 0.2765 in 3 /lb, which is a 59% overall change. Knowing the specific volumes of two or more substances allows one to find useful information for certain applications.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The table of specific heat capacities gives the volumetric heat capacity as well as the specific heat ... Water at 100 °C (steam) gas: 2.03: 36.5: 27.5: 1.53: Water ...
Submerged specific gravity is a dimensionless measure of an object's buoyancy when immersed in a fluid.It can be expressed in terms of the equation = where stands for "submerged specific gravity", is the density of the object, and is the density of the fluid.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The steam to oil ratio is a measure of the water and energy consumption related to oil production in cyclic steam stimulation and steam assisted gravity drainage oil production. SOR is the ratio of unit of steam required to produce unit of Oil. The typical values are three to eight and two to five respectively.