When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. GNU Multiple Precision Arithmetic Library - Wikipedia

    en.wikipedia.org/wiki/GNU_Multiple_Precision...

    GNU Multiple Precision Arithmetic Library (GMP) is a free library for arbitrary-precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. [4] There are no practical limits to the precision except the ones implied by the available memory (operands may be of up to 2 32 −1 bits on 32-bit machines and 2 37 ...

  3. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.

  4. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or () in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal , meaning that any algorithm for that task would require Ω ( n 2 ) {\displaystyle \Omega (n^{2 ...

  5. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    For multiplication, the most straightforward algorithms used for multiplying numbers by hand (as taught in primary school) require (N 2) operations, but multiplication algorithms that achieve O(N log(N) log(log(N))) complexity have been devised, such as the Schönhage–Strassen algorithm, based on fast Fourier transforms, and there are also ...

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  7. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.

  8. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    This section has a simplified version of the algorithm, showing how to compute the product of two natural numbers ,, modulo a number of the form +, where = is some fixed number. The integers a , b {\displaystyle a,b} are to be divided into D = 2 k {\displaystyle D=2^{k}} blocks of M {\displaystyle M} bits, so in practical implementations, it is ...

  9. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...