When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    Standardization of the coefficient is usually done to answer the question of which of the independent variables have a greater effect on the dependent variable in a multiple regression analysis where the variables are measured in different units of measurement (for example, income measured in dollars and family size measured in number of individuals).

  3. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n × 1 vector of the ...

  4. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  5. Instrumental variables estimation - Wikipedia

    en.wikipedia.org/wiki/Instrumental_variables...

    This equation is similar to the equation involving ⁡ (,) in the introduction (this is the matrix version of that equation). When X and e are uncorrelated , under certain regularity conditions the second term has an expected value conditional on X of zero and converges to zero in the limit, so the estimator is unbiased and consistent.

  6. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    The two regression lines are those estimated by ordinary least squares (OLS) and by robust MM-estimation. The analysis was performed in R using software made available by Venables and Ripley (2002). The two regression lines appear to be very similar (and this is not unusual in a data set of this size).

  7. Structural equation modeling - Wikipedia

    en.wikipedia.org/wiki/Structural_equation_modeling

    There is a limit to how many coefficients can be estimated in a model. If there are fewer data points than the number of estimated coefficients, the resulting model is said to be "unidentified" and no coefficient estimates can be obtained. Reciprocal effect, and other causal loops, may also interfere with estimation. [31] [32] [30]

  8. Exploratory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_factor_analysis

    Fitting procedures are used to estimate the factor loadings and unique variances of the model (Factor loadings are the regression coefficients between items and factors and measure the influence of a common factor on a measured variable). There are several factor analysis fitting methods to choose from, however there is little information on ...

  9. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  1. Related searches how to interpret estimated coefficients in spss 19 version 14

    standardized coefficientregression coefficient of determination
    standardized coefficient formula