Search results
Results From The WOW.Com Content Network
The strong real Jacobian conjecture was that a real polynomial map with a nowhere vanishing Jacobian determinant has a smooth global inverse. That is equivalent to asking whether such a map is topologically a proper map , in which case it is a covering map of a simply connected manifold , hence invertible.
Jacobian conjecture. Keller asked this as a question in 1939, and in the next few years there were several published incomplete proofs, including 3 by B. Segre, but Vitushkin found gaps in many of them. The Jacobian conjecture is (as of 2016) an open problem, and more incomplete proofs are regularly announced.
If it is true, the Jacobian conjecture would be a variant of the inverse function theorem for polynomials. It states that if a vector-valued polynomial function has a Jacobian determinant that is an invertible polynomial (that is a nonzero constant), then it has an inverse that is also a polynomial function. It is unknown whether this is true ...
The original conjecture posed by Jacobson in 1956 [1] asked about noncommutative one-sided Noetherian rings, however Israel Nathan Herstein produced a counterexample in 1965, [2] and soon afterwards, Arun Vinayak Jategaonkar produced a different example which was a left principal ideal domain. [3]
Ott-Heinrich Keller. Eduard Ott-Heinrich Keller (22 June 1906 in Frankfurt – 5 December 1990 in Halle) was a German mathematician who worked in the fields of geometry, topology and algebraic geometry.
Hartshorne's conjectures [42] Jacobian conjecture: if a polynomial mapping over a characteristic-0 field has a constant nonzero Jacobian determinant, then it has a regular (i.e. with polynomial components) inverse function. Manin conjecture on the distribution of rational points of bounded height in certain subsets of Fano varieties
The solution of the Jacobi inversion problem for the hyperelliptic Abel map by Weierstrass in 1854 required the introduction of the hyperelliptic theta function and later the general Riemann theta function for algebraic curves of arbitrary genus.
The Abel–Jacobi theorem implies that the Albanese variety of a compact complex curve (dual of holomorphic 1-forms modulo periods) is isomorphic to its Jacobian variety (divisors of degree 0 modulo equivalence). For higher-dimensional compact projective varieties the Albanese variety and the Picard variety are dual but need not be isomorphic.