When.com Web Search

  1. Ads

    related to: what is lcd in algebra 3 examples of equations worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Lowest common denominator - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_denominator

    In musical rhythm, the LCD is used in cross-rhythms and polymeters to determine the fewest notes necessary to count time given two or more metric divisions. For example, much African music is recorded in Western notation using 12 8 because each measure is divided by 4 and by 3, the LCD of which is 12.

  3. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth. But the same substitution applied to the original equation results in x /6 + 0/0 = 1 , which is mathematically meaningless .

  4. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.

  5. Cross-multiplication - Wikipedia

    en.wikipedia.org/wiki/Cross-multiplication

    Note that even simple equations like = are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator.

  6. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it . An exponential equation is one which has the form a x = b {\displaystyle a^{x}=b} for a > 0 {\displaystyle a>0} , [ 43 ] which has solution

  7. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Substituting these formulae for r N−2 and r N−3 into the first equation yields g as a linear sum of the remainders r N−4 and r N−5. The process of substituting remainders by formulae involving their predecessors can be continued until the original numbers a and b are reached: r 2 = r 0 − q 2 r 1 r 1 = b − q 1 r 0 r 0 = a − q 0 b.