Ad
related to: best unbiased estimator
Search results
Results From The WOW.Com Content Network
In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter.
In statistics, best linear unbiased prediction (BLUP) is used in linear mixed models for the estimation of random effects. BLUP was derived by Charles Roy Henderson in 1950 but the term "best linear unbiased predictor" (or "prediction") seems not to have been used until 1962. [ 1 ] "
In statistics, the Gauss–Markov theorem (or simply Gauss theorem for some authors) [1] states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. [2]
The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.
The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete, sufficient statistic is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers. [2] [3]
Both theories derive a best linear unbiased estimator based on assumptions on covariances, make use of Gauss–Markov theorem to prove independence of the estimate and error, and use very similar formulae. Even so, they are useful in different frameworks: kriging is made for estimation of a single realization of a random field, while regression ...
A desired property for estimators is the unbiased trait where an estimator is shown to have no systematic tendency to produce estimates larger or smaller than the true parameter. Additionally, unbiased estimators with smaller variances are preferred over larger variances because it will be closer to the "true" value of the parameter.
The Cramér–Rao lower bound is a lower bound of the variance of an unbiased estimator, representing the "best" an unbiased estimator can be. An efficient estimator is also the minimum variance unbiased estimator (MVUE). This is because an efficient estimator maintains equality on the Cramér–Rao inequality for all parameter values, which ...