When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  3. Exchange current density - Wikipedia

    en.wikipedia.org/wiki/Exchange_current_density

    This ongoing current in both directions is called the exchange current density. When the potential is set more negative than the formal potential, the cathodic current is greater than the anodic current. Written as a reduction, cathodic current is positive. The net current density is the difference between the cathodic and anodic current density.

  4. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  5. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The formal standard reduction potential ′ can be defined as the measured reduction potential of the half-reaction at unity concentration ratio of the oxidized and reduced species (i.e., when ⁠ C red / C ox ⁠ = 1) under given conditions. [3] Indeed:

  6. Tafel equation - Wikipedia

    en.wikipedia.org/wiki/Tafel_equation

    The exchange current is the current at equilibrium, i.e. the rate at which oxidized and reduced species transfer electrons with the electrode. In other words, the exchange current density is the rate of reaction at the reversible potential (when the overpotential is zero by definition).

  7. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    The larger the value of the standard reduction potential, the easier it is for the element to be reduced (gain electrons); in other words, they are better oxidizing agents. For example, F 2 has a standard reduction potential of +2.87 V and Li + has −3.05 V: F 2 (g) + 2 e − ⇌ 2 F − = +2.87 V Li + + e − ⇌ Li (s) = −3.05 V

  8. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    At a certain voltage E e, equilibrium will attain and the forward and backward rates (v f and v b) will be equal. This is represented by the green curve in the above figure. The equilibrium rate constants will be written as k fe and k be, and the equilibrium concentrations will be written c oe and c re.

  9. Electrochemistry - Wikipedia

    en.wikipedia.org/wiki/Electrochemistry

    Standard electrode potentials are usually tabulated as reduction potentials. However, the reactions are reversible and the role of a particular electrode in a cell depends on the relative oxidation/reduction potential of both electrodes. The oxidation potential for a particular electrode is just the negative of the reduction potential.