Search results
Results From The WOW.Com Content Network
Illustration of a cylinder and the planification of its lateral surface. The lateral surface of a right cylinder is the meeting of the generatrices. [3] It can be obtained by the product between the length of the circumference of the base and the height of the cylinder. Therefore, the lateral surface area is given by: =. [2]
If the elements of the cylinder are perpendicular to the planes containing the bases, the cylinder is a right cylinder, otherwise it is called an oblique cylinder. If the bases are disks (regions whose boundary is a circle) the cylinder is called a circular cylinder. In some elementary treatments, a cylinder always means a circular cylinder. [2]
When the inscribing cylinder is tight and has a height =, so that the sphere touches the cylinder at the top and bottom, he showed that both the volume and the surface area of the sphere were two-thirds that of the cylinder. This implies the area of the sphere is equal to the area of the cylinder minus its caps. This result would eventually ...
Graphs of surface area, A against volume, V of the Platonic solids and a sphere, showing that the surface area decreases for rounder shapes, and the surface-area-to-volume ratio decreases with increasing volume. Their intercepts with the dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times.
For shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus. [5] For a solid shape such as a sphere, cone, or cylinder, the area of its boundary surface is called the surface area.
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
A simple application of dimensional analysis to mathematics is in computing the form of the volume of an n-ball (the solid ball in n dimensions), or the area of its surface, the n-sphere: being an n-dimensional figure, the volume scales as x n, while the surface area, being (n − 1)-dimensional, scales as x n−1.
Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, [1] (with units of m 2 /kg or m 2 /g). Alternatively, it may be defined as SA per solid or bulk volume [2] [3] (units of m 2 /m 3 or m −1). It is a physical value that can be used to determine the type and properties of a ...