When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    To find the reflection of a figure, reflect each point in the figure. To reflect point P through the line AB using compass and straightedge, proceed as follows (see figure): Step 1 (red): construct a circle with center at P and some fixed radius r to create points A′ and B′ on the line AB, which will be equidistant from P.

  3. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    This isometry maps the x-axis to itself; any other line which is parallel to the x-axis gets reflected in the x-axis, so this system of parallel lines is left invariant. The isometry group generated by just a glide reflection is an infinite cyclic group. [1]

  4. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    To find the amplitudes for reflection and transmission for incidence from the left, we set in the above equations A → = 1 (incoming particle), A ← = √ R (reflection), B ← = 0 (no incoming particle from the right) and B → = √ Tk 1 /k 2 (transmission [1]). We then solve for T and R. The result is:

  5. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    So suppose p 1, p 2, p 3 map to q 1, q 2, q 3; we can generate a sequence of mirrors to achieve this as follows. If p 1 and q 1 are distinct, choose their perpendicular bisector as mirror. Now p 1 maps to q 1; and we will pass all further mirrors through q 1, leaving it fixed. Call the images of p 2 and p 3 under this reflection p 2 ′ and p 3

  6. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  7. Householder transformation - Wikipedia

    en.wikipedia.org/wiki/Householder_transformation

    In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder. [1]

  8. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where

  9. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!