Search results
Results From The WOW.Com Content Network
Atmospheric refraction of the light from a star is zero in the zenith, less than 1′ (one arc-minute) at 45° apparent altitude, and still only 5.3′ at 10° altitude; it quickly increases as altitude decreases, reaching 9.9′ at 5° altitude, 18.4′ at 2° altitude, and 35.4′ at the horizon; [4] all values are for 10 °C and 1013.25 hPa ...
Atmospheric temperature is a measure of temperature at different levels of the Earth's atmosphere. It is governed by many factors, including incoming solar radiation , humidity , and altitude . The abbreviation MAAT is often used for Mean Annual Air Temperature of a geographical location.
In addition to the density of incident light, the dissipation of light in the atmosphere is greater when it falls at a shallow angle. Figure 2 One sunbeam one mile wide shines on the ground at a 90° angle, and another at a 30° angle. The one at a shallower angle covers twice as much area with the same amount of light energy.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
the altitude from which the atmosphere emits that that wavelength to space increases (since the altitude at which the atmosphere becomes transparent to that wavelength increases); if the emission altitude is within the troposphere, the temperature of the emitting air will be lower, which will result in a reduction in OLR at that wavelength.
This increase of temperature with altitude is characteristic of the stratosphere; its resistance to vertical mixing means that it is stratified. Within the stratosphere temperatures increase with altitude (see temperature inversion); the top of the stratosphere has a temperature of about 270 K (−3°C or 26.6°F). [9] [page needed]
Blue light is scattered more than other wavelengths by the gases in the atmosphere, surrounding Earth in a visibly blue layer at the stratosphere, above the clouds of the troposphere, when seen from space on board the ISS at an altitude of 335 km (208 mi) (the Moon is visible as a crescent in the far background). [1]
The reduction in velocity near the surface is a function of surface roughness, so wind velocity profiles are quite different for different terrain types. [5] Rough, irregular ground, and man-made obstructions on the ground can reduce the geostrophic wind speed by 40% to 50%. [9] [10] Over open water or ice, the reduction may be only 20% to 30%.