Search results
Results From The WOW.Com Content Network
For example, in the above reaction, it can be shown that this is a redox reaction in which Fe is oxidised, and Cl is reduced. Note the transfer of electrons from Fe to Cl. Decomposition is also a way to simplify the balancing of a chemical equation. A chemist can atom balance and charge balance one piece of an equation at a time. For example:
The term redox state is often used to describe the balance of GSH/GSSG, NAD + /NADH and NADP + /NADPH in a biological system such as a cell or organ. The redox state is reflected in the balance of several sets of metabolites (e.g., lactate and pyruvate, beta-hydroxybutyrate and acetoacetate), whose interconversion is dependent on these ratios ...
In general, these redox balances (the one-line balance or each half-reaction) need to be checked for the ionic and electron charge sums on both sides of the equation being indeed equal. If they are not equal, suitable ions are added to balance the charges and the non-redox elemental balance.
In contrast, some authors use the term redistribution to refer to reactions of this type (in either direction) when only ligand exchange but no redox is involved and distinguish such processes from disproportionation and comproportionation. For example, the Schlenk equilibrium. 2 RMgX → R 2 Mg + MgX 2. is an example of a redistribution reaction.
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis: P i + glyceraldehyde-3-phosphate + NAD + → NADH + H + + 1,3-bisphosphoglycerate. In this reaction, NAD + is the oxidant (electron acceptor), and glyceraldehyde-3-phosphate is the reductant (electron donor).
An atom (or ion) whose oxidation number increases in a redox reaction is said to be oxidized (and is called a reducing agent). It is accomplished by loss of one or more electrons. The atom whose oxidation number decreases gains (receives) one or more electrons and is said to be reduced. This relation can be remembered by the following mnemonics.
In order to balance each half-reaction, the water needs to be acidic or basic. In the presence of acid, the equations are: Cathode (reduction): ... [11] In practice ...