When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    In statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well.

  3. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    The sum of N chi-squared (1) random variables has a chi-squared distribution with N degrees of freedom. Other distributions are not closed under convolution, but their sum has a known distribution: The sum of n Bernoulli (p) random variables is a binomial (n, p) random variable.

  4. Noncentral F-distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_F-distribution

    In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a noncentral generalization of the (ordinary) F-distribution. It describes the distribution of the quotient ( X / n 1 )/( Y / n 2 ), where the numerator X has a noncentral chi-squared distribution with n 1 degrees of freedom and ...

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables. It is a special case of the Gamma distribution, and it is used in goodness-of-fit tests in statistics. The inverse-chi-squared distribution; The noncentral chi-squared distribution; The scaled inverse chi-squared distribution; The Dagum ...

  6. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as generalizations of SED.

  7. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  8. Hellinger distance - Wikipedia

    en.wikipedia.org/wiki/Hellinger_distance

    To define the Hellinger distance in terms of elementary probability theory, we take λ to be the Lebesgue measure, so that dP / dλ and dQ / dλ are simply probability density functions. If we denote the densities as f and g, respectively, the squared Hellinger distance can be expressed as a standard calculus integral

  9. Negative relationship - Wikipedia

    en.wikipedia.org/wiki/Negative_relationship

    Negative correlation can be seen geometrically when two normalized random vectors are viewed as points on a sphere, and the correlation between them is the cosine of the circular arc of separation of the points on a great circle of the sphere. [1] When this arc is more than a quarter-circle (θ > π/2), then the cosine is negative.